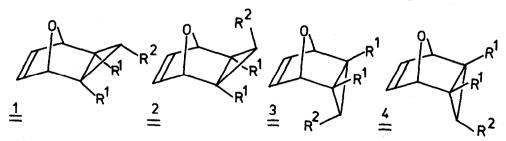
STEREOMUTATIONEN UND [2\pi+2\sigma]THERMOCYCLOADDITIONEN DER DIELS-ALDER-ADDUKTE VON DIPHENYLCYCLOPROPENESTER MIT CYCLOPENTADIEN UND FURAN.


SYNTHESE HOMOLOGER OXAOUADRICYCLANE 1)

Hans-Dieter Martin*, Lydia Kaudy und Dieter Stusche Institut für Organische Chemie der Universität, D-87 Würzburg, Am Hubland

(Received in Germany 4 August 1977; received in UK for publication 12 August 1977)

Diels-Alder-Reaktionen mit Furan als Dienkomponente und Cyclopropenen als dienophilem Partner beanspruchen aus zwei Gründen Interesse. Der eine betrifft die schwer vorausschaubare Stereoselektivität dieser Reaktion 2), da einerseits Furanadditionen aufgrund rasch ablaufender Rückspaltungen der thermodynamischen Kontrolle unterliegen können, andererseits Cyclopropene nicht immer dem endo-Prinzip gehorchen müssen 3,4). Zum andern sind die Cycloaddukte als potentielle Reaktanten intramolekularer $[2\pi+2\sigma]$ -Cycloadditionen 5) – vermutlich konkurrierend zur Retro-Diels-Alder-Spaltung – aufzufassen. Wir berichten hier über die Reaktion zwischen Furan und Diphenylcyclopropenester und einen neuen Zugang zu tetracyclischen Dicyclopropyläthern.

Vier stereoisomere Addukte 🛚 bis 🛓 sind zwischen dem Cyclopropenderivat 💆 und Furan denkbar.

Bei 110 $^{\rm O}{\rm C}$ bildet sich ein 1:1-Addukt, dem die Struktur $\underline{1}$ (Schmp. 108-109 $^{\rm O}{\rm C}$) zugeordnet wird.

$$R^{1} = C_{6}H_{5}$$

$$= R^{2} = COOCH_{5}$$

In der <u>endo-Konfiguration 4</u> sollte das Cyclopropylproton dem abschirmenden Einfluß der Doppelbindung ausgesetzt sein, es würde deshalb nach Hydrierung eine paramagnetische Verschiebung erfahren $^{6)}$. Tatsächlich beobachtet man jedoch in $\underline{6}$ (Schmp. 117-118 0 C) eine Hochfeldverschiebung von 0.4 ppm. Sterische Gründe sowie die Invarianz der Estersignale gegenüber Hydrierung können als Argument gegen $\underline{3}$ angesehen werden.

Behandelt man $\underline{1}$ mit Natriummethanolat, so entsteht das Isomer $\underline{2}$ (Schmp. 135-137 O C), das zu $\underline{7}$ (Schmp. 142-146 O C) hydriert werden kann. $\underline{7}$ entsteht auch bei Basenbehandlung von $\underline{6}$.

$$\frac{1}{4} = \frac{\frac{H_2}{R^1} + \frac{R^2}{R^2} + \frac{R^2}{R^1} + \frac{R^2}{R^2}}{\frac{R^2}{R^1} + \frac{R^2}{R^2}} = \frac{\frac{R^2}{R^2} + \frac{R^2}{R^2}}{\frac{R^2}{R^2} + \frac{R^2}{R^2}} = \frac{\frac{R^2}{R^2} + \frac{R^2}{R^2}}{\frac{R^2}{R^2}} = \frac{\frac{R^2}{R^2} + \frac{R^2}{R^2}}{\frac{R^2}{R^2}} = \frac{\frac{R^2}{R^2} + \frac{R^2}{R^2}}{\frac{R^2}{R^2}} = \frac{\frac{R^2}{R^2} + \frac{R^2}{R^2}}{\frac{R^2}{R^2}} = \frac{\frac{R^2}{R^2}}{\frac{R^2}{R^2}} = \frac{\frac{R^2}{R^2}}{\frac{R^2}}$$

Wichtige Hilfestellung bei der Strukturzuordnung geben die Signale der Cyclopropyl- und Esterprotonen sowie die am Cyclopentadienaddukt 8^{-6} gewonnenen Resultate.

$$\begin{array}{c} + 5 \\ = \\ & \underline{8} \\ & \underline{R}^{1} \\ & \underline{9} \\ & \underline{R}^{2} \end{array}$$

Wie früher schon gezeigt wurde, sind endo,exo-Isomerisierungen thermisch realisierbar $^{5)}$. Erhitzen von $_{2}^{6)}$ liefert das Isomer $_{10}^{10}$ (Schmp. 165 0 C), das notwendigerweise die Estergruppe in trans-Position zu den Phenylringen trägt. Bei der Behandlung von $_{10}^{10}$ mit NaOCH $_{3}^{10}$ entsteht ein Gleichgewichtsgemisch (etwa 1:1) aus $_{10}^{10}$ und dem epimeren $_{11}^{11}$ (Schmp.115-117 0 C). Wichtige Informationen können dem Vergleich der Ester- und Cyclopropylprotonen von $_{10}^{10}$, $_{10}^{10}$

und 7 mit 9,10 und 11 entnommen werden.

$$\underline{9} \quad \underline{180 \text{ °C}}$$

$$\underline{10} \quad R^{1} \quad NaOCH_{3}$$

$$\underline{11} \quad R^{1} \quad R^{2}$$

	1	€	2 €	<u>7</u>	9	<u>10</u>	<u>11</u>	
Cyclopropy1-H	3.40	3.00	2.75	1.80	2.80	2.00	2.80	٥ (ppm)
осн ₃	3.30	3.30	3.70	3.70	3.40	3.80	3.25	٥ (ppm)

- Das zu den Phenylgruppen cis-ständige Cyclopropylproton in 10 ist deutlich abgeschirmt
 (0.8 ppm) gegenüber der trans-Stellung in 9 oder 11.
- 2) Die OCH_3 -Protonen von $\underline{9}$ und $\underline{11}$ erscheinen in <u>cis</u>-Position bei vergleichsweise höherem Feld als die entsprechenden Protonen der trans-Verbindung $\underline{10}$.
- 3) Bei den Furanaddukten $\frac{1}{2}$ und $\frac{6}{9}$ mit $\frac{cis}{s}$ -ständiger Methoxycarbonylgruppe erscheint die OCH $_3$ -Resonanz bei höherem Feld als bei den $\frac{1}{2}$ -Isomeren $\frac{1}{2}$ und $\frac{7}{2}$.
- 4) Das Cyclopropylproton der Furanaddukte ist in der trans-Position (lund 6) stärker entschirmt als in der epimeren cis-Stellung (2 und 2).
- 5) Während bei dem endo-Paar 8/9 Hydrierung der Doppelbindung eine Tieffeldverschiebung des Cyclopropylprotons um 0.5 ppm zur Folge hat, verursacht der Wegfall der Doppelbindung in den exo-Addukten 1/6 und 2/7 eine diamagnetische Verschiebung um 0.4 bzw. 0.95 ppm. Es ist also besonders die exo,anti-Position (in bezug auf die 0-Brücke) des Cyclopropylprotons, in welcher das Vorhandensein der π-Bindung auffallend stark registriert wird.
- 6) Der Einfluß des Brückensauerstoffs geht aus folgendem Vergleich hervor. In $\underline{7}$ und $\underline{10}$ befindet sich das Cyclopropylproton in sehr ähnlicher Umgebung (1.80 und 2.00 ppm). Isomerisierung in die epimere Position führt zu $\underline{6}$ bzw. $\underline{11}$ mit $\Delta \delta_{7\rightarrow 6}$ =1.20 ppm bzw. $\Delta \delta_{10\rightarrow 11}$ =0.80 ppm. Offensichtlich übt das Sauerstoffatom, verglichen mit der Methylengruppe, einen entschirmenden Einfluß aus 7).

Aus der basenkatalysierten Gleichgewichtseinstellung zwischen <u>10</u> und <u>11</u> kann gefolgert werden, daß die sterischen Wechselwirkungen der Methoxycarbonylgruppe mit den beiden cisständigen Phenylringen in <u>11</u> denen vergleichbar sind, die die Estergruppe in <u>10</u> durch die CH₂-Brücke erfährt. Bei Abwesenheit der beiden Phenylgruppen ist die <u>exo,anti</u>-Position

der Estergruppe deutlich bevorzugt $^{8)}$. Unter der gerechtfertigten Annahme, daß der Raumbedarf des O-Atoms geringer ist als der der CH_2 -Gruppe, wird man für das Gleichgewicht 1/2 oder 6/2 eine deutliche Bevorzugung der $\frac{1}{2}$ bei Methanolatbehandlung anzeigen.

Erhitzt man den Ester $\underline{1}$ (2h, 160 °C), so tritt vollständige Retro-Diels-Alder-Spaltung zu Furan und $\underline{5}$ ein. Ester $\underline{2}$ hingegen isomerisiert bei 130 °C zu dem Oxaquadricyclanhomologen $\underline{12}$ (Schmp. 107-108 °C).

$$\frac{2}{\text{H}} \qquad \frac{130^{\circ}\text{C}}{\text{H}} \qquad \frac{12}{\text{H}}$$

Das thermisch so unterschiedliche Verhalten der Epimeren $\frac{1}{2}$ und $\frac{2}{2}$ wird verständlich, wenn man sich die Geometrie des Obergangszustands der Cycloreversion vor Augen hält. In $\frac{1}{2}$ ist gemäß dem Prinzip der mikroskopischen Reversibilität dieser Obergangszustand problemlos zu bilden, in $\frac{2}{2}$ wird die sterische Hinderung mit der Methoxycarbonylgruppe zu groß, die intramolekulare Thermo- $\frac{1}{2}\pi+2\sigma$ -Cycloaddition $\frac{5}{2}$ kann nun wirksam konkurrieren.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt.

- "Kleine Ringe", 22. Mitteilung 21. Mitteilung: H. Prinzbach, G. Sedelmeier u. H.-D. Martin, Angew. Chem. 89, 111 (1977).
- M.A. Battiste u. C.T. Sprouse, Tetrahedron Lett. 1970, 4661; M.P. Cava u. K. Narasimhan, J. Org. Chem. 36, 1419 (1971); R. Breslow, G. Ryan u. J.T. Groves, J. Am. Chem. Soc. 92, 988 (1970); D.C.F. Law u. S.W. Tobey, ebenda 90, 2376 (1968); R.M. Magid u. S.E. Wilson, J. Org. Chem. 36, 1775 (1971).
- 3) K. Alder u. G. Stein, Angew. Chem. <u>50</u>, 510 (1937); J.G. Martin u. R.K. Hill, Chem. Rev. <u>61</u>, 537 (1961); J. Sauer, Angew. Chem. <u>79</u>, 76 (1967).
- 4) K.B. Wiberg u. W.J. Bartley, J. Am. Chem. Soc. 82, 3796 (1963); R. Sustmann u. G. Binsch, Mol. Phys. 20, 9 (1971).
- 5) H.-D. Martin, Chem. Ber. <u>107</u>, 477 (1974); C. Heller u. H.-D. Martin, Tetrahedron Lett. <u>1976</u>, 4329.
- 6) M. Battiste, Tetrahedron Lett. 1964, 3795.
- 7) L. Ghosez, P. Laroche u. G. Slinckx, Tetrahedron Lett. 1967, 2767.
- 8) S.C. Clarke u. B.L. Johnson, Tetrahedron 24, 5067 (1968).